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A VARIATIONAL THEOREM FOR CREEP WITH APPLICATIONS TO PLATE-S AND COLUMNS ‘

By J. LYELL SANDERS,JE., HARVEY G. McCom, Jrt., and FLOYD R. SCHLECEITE

/

SUMMARY

A variatiorud theorem ii pre-wnted for a bodv underaoino
creep. Solw%nJ3to Problem; of the ;eep behuviv of pki,
columng, beunu, and shells can be obtaind by meam of the
direct metlwdsof the ealcu.lw of varia$ti in conjunction with
the stated tiorem. The applixkon oj the theorem ti iUua-
tratedfor plata and colum?w by the soluiion of two sample
problems.

INTRODUCTION

Interest in the various effects of creep in metals has
intensified in recent years in the aeronautical field beeause
of actual or envisaged operation of aircraft in an elevated-
tmpemture environment. Much experimental work has
been done to determine the creep stress-strain relations of
various metals at elevated temperatures, and much data
have been accumulated on the creep collapse of columns and
plates. Analytically, creep problems for beams, columns,
rmd plates are more diiiicult than the corresponding elastic
problems, because the creep stress-strain relations (which
generally include the possibility of elastic and plastic strains)
me nonlinenr. One consequence of this nonlinearity is that
the distribution of the stresses through the thickness of the
beam, plate, or column is not nearly so simple as in the
elastic case. Mathematical analyses of these structural
components have often been restricted to simplified models
@-section columns, for example) to avoid this difficulty.

No known systematic procedures have been devised for
reducing a given creep problem to a set of differential
equations, although some efforts have been made to develop
variational methods for use in attacking these problems
mathematically. Hoff (refs. 1 and 2) has suggested the use
of rLminimum+omplementary-energy principle based on an
analog between the creep-strain rates and the elastic strains
in a nonlinearly elastic body; however, elastic and plastic
strains are neglected and the method does not apply readily
to plate and column problems. Wang and Prager (ref. 3)
have given two general extremum principles (for a body
with elastic, plastic, thermal, and creep strains) analogous
to the minimumomplementary-energy and minimum-
potential-energy principles in elasticity. In the pr~ent
report, an analog of Reissner’s variatiomd theorem in
elasticity (refs. 4 and 5) is formulated (for a body with
elastic, plastic, and creep strains), and special forms of it

are found to be convenient for handling creep problems of
plates., columns, beams, and shells. The use of the vari-
ational theorem presented herein is illustrated by applica-
tions to lnvo creep problems: creep collapse of columns and
plate bending.
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SYMBOLS

Young’s modulus
int~ral to be varied (see eq. (7))
integralsdefined by equations (46)
second invarirmtof stress-deviator tensor
radial and tangential bending moments,

respectively, per unit length
radial and tmgentisl bending-moment

coefficients defined by equations (44)
compressive load
buckling load for column
surface of a body
part of surface where stresses are pre-

scribed
part of surface where displacements are

prescribed
surface traction
prescribed surfaw traction on S,
displacement of neutral surface in z-di-

rection
displacement coefficient in z-direction

(see eqs. (28))
displacement of neutral surface in y-di-

rection; also used as volume integral
deflection of neutral surface in z-direc-

tion
deflection coefficients (see eqs. (28) or

(44))
radius of circular plate
width of column
thiclmess of column or plate
length of column
empirical comtsnt in creep law
tit external normal to surface of un-

deformed body
empirical constsmt in creep law
lateral load intensity on circular plate
radial coordinate
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stress-deviator tensor
time
displacement in direction
&placement vector
prescribed disp1ac8mentvector on sd
displacement in y-direction
&placement in z-direction .
coordinates
shear strains in w-, yz-, and, xy-direc-

tions, respectively
amplitude of initial bow of column di-

vided by column thickness
Kronecker delta
strain, positive in tension
strain tensor
noncreep portion of strain tensor
creep strain tensor
radial and tangential strains, respec-

tively
strain in z-, y-, and z-directions, respec-

tively
angular coordinate
empirical constant in creep law
Poisson’s ratio

strew, positive in tension
stress tensor
stresses defined in equation (27)
stress ,coe.fiicientsin equations (28)
radial and tangential stresses, respec-

tively
Dots over quantities denote diilerentiation with respect

to time, a single prime denotes the elastic-plaqtic part of the
,strain,and a double prime denotes the creep part of the strain.

FORMULA’MON OF GENERAL VARIATIONAL THEOREM

For a body subject to creep, the equilibriti equations
xmd straindisplacement relations are the same as those for
an elastic body; the only difference in the mathematical
formulation of a creep problem is in the stress-strainrelation.
In the present development, the nordinear strain-dkplace-
ment relations and equilibrium equations are used because
of the intended application of the variational theorem to
collapse problems of columns and plates. However, the
strains are still assumed to be small, and the stress-strainre-
lations are written as for infiniteirmd strains. The total
strain rate is separated into a creep part and a part which in-
<ludes elastic and plastic effects. The creep part of the stmi.n
rate is allowed to depend on time and on the strew deviator
but not on the stressrate or the first invariant of stress. In
this report, the temperature of the body is assumed to be nni-
form and constant in time.

In tensor notation, a simple example of the creep law
assumed is

&=f(J2,t)8ij (1)

where Sij is the stress deviator and J2 is the second fivariant

$ S’jsifi For purposes of the present report, the only restric-

tion on the stress-strain relation for the elastic-plastic part

of the strain is that the following relation hold (see ref. 6):

;f#i;j= i;&G{,

The equation for the components of iinite strain is

%=; (’% j+% f+% i’%j)

or, in differentiated form,

ii,=: (Ui,j+ ’lij,$+’li~ (lLk.,j+u~ & j)

The equilibrium equation is ,

[(a,, +zh,.)ufi],j=o

(2)

(3)

(4)

(6)

The equation giving the surface traction T{ in terms of
stresses and displacements on the boundary is

Ti=ufin&-1-uA (6)

where ~j is the unit external normal to the surface of the
undeformed body.

The components of the tensor Cijare not true strains, tmcl
neither are the components of the tensor Uij true streams.
However, the specific virtual work due to a virtual displace-
ment &uiis given by

6w=u<&i \

Therefore, the tensor ut~maybe considered to be the gener-
alized force conjugate to the generalized displncernent
Cffi In reference 7, thistensor is called k~jnnd in reference
8 itiscalled U?fi

As in many.of the variational theorems of the mathemati-
cal theory of plasticity (see ref. 6), the variational theorem
to be stated here is for stress rates rmd strain rates; that is,
if the states of stress and strain throughout the body me
known at a given instant, then appliwtion of the vmiotiomd
theorem singles out the stress rates or strain rates thot
actually occur from those rates of stress or strain considered
in the enunciation of the theorem. Thus, the operator 6
in the formal process of taking the variations is applied only
to time derivative of quantities and not to the quantities
themselves. Because of this, for example, 6&~j=O becwse
::, depends upon tha state of stress but not upon the stress
rate. (See eq. (l).)

The quantity to be varied was constructed by an inverse
process guided by the form of Reissner’s theorem and the
first theoxem of Wang and Prager. By trial and error, the
terms necessmy to obtain the desired result were found for

the int~al to be varied. Let T,=?, be prescribed on the
part S8 of the bounding surface S of a body and let h,=%
be prescribed on the remaining part S; of tho bounclury.
The variational theorem to be proved is 81= O where

I=
H

1 1iij;ij+u~&juij—~(i;j+z:j)~tj~v—v
J z!%,dS-J (ti,-iz,)i’,m (7)

% s~
Inthe first term of the volume integral, Lj is understood to
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be. written in terms of displac-ents and velocities (eq.
(4)). In the third term of the volume integral, ;;, is imder-
stood to be written in terms of stresses and stress rates,
whereas ;~j is written in terms of stresses.

The variation of I is given by

~ra
S[

i@i,+&fj&fj+u@t,{ &Zi&j—
v

where &~j=O as previously noted. The second term in the
volume integral may be transformed by an integration by
parts. The following formula applies:

J

.
>i$ii~v= J tiijn1(8@+uk,i)&dS-

V ii

s
[(afi+u~i)ti,j]o, l%dv (9)

v

The third term may also be integrated by parts; thus,

J ui,ti~i&i&j [iv=J uijnjukt &idS—
J

(a*,ti&,),,&ikdv (lo)
v 8 v

By using equations (9), (10), and (2), equation (8) becomes

ISI=J {i,j~+,j–[(b,,+u~,) ti,,]$ j &i.-(@i~ ,)1, titik–
v

J(i;,+ i;j)6&,j}dV+ [ti,@j(&,+~,) +U,fljU%,]&itdS–
s

J J
,

@@i,ds- ~~[(ti,-ti,)a~,+~, &i,]dSs,
(11)

(12)

The coefficient of each of the variations vanishes by virtue
of the stress-strain relations, equilibrium equations, stress
boundary conditions, and displacement boundary conditions,
respectively. Thus, it is proved that &I= O for the stress
rates cmd strain rates that actuilly occur.

A term maybe added to the volume integral to include the
Meets of body forces if necessary. In some special cases,
the boundary integrals should be modified if boundary condi-
tions other than those on Z’i or u~are imposed.

III the next section, a form for 1 appropriate for application
to thin-plate and column problems is developed.

THEORETICAL APPLICATION OF VARIATIONAL THEOREM
TO PLATE AND COLUMN PROBLEMS

The variational theorem proved in the preceding section
provides a powerful menns for deriving an appropriate two-

fi9f3~07_(J&9
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dimensional theory for thin plates subject to creep (or one-
dimensional theory for beams and columns) analogous to the
two-dimensional theory for thin elastic platw. If certain
simplifying aasnmptions are made about the dependence of
the various displacements and stresses on the z-coordinate
(measured normal to the middle surface), the integrations
with respect to z in the titegral I may then be carried out.
The equations resulting from ~1=0 then involve only z, y,
and t as independent variables.

In this report, the same simplifying assumptions with
regard to displacements are made that were made in the
elastic case. lh particular, the BernouUi-EnIer hypothesis
is retained. This hypothesis can be regarded as a conse-
quence of the equilibrium equations and the straindisplace-
ment equations a9 applied to a thin plate. The tm.nsverse
shear stresses vanish on the surface of the plate ~d are
thus expectid to be negligible (compared with mplane
stresses) throughout the thicknew. By any of the common
stre9s-strain relation9 (ela9tic, plastic, or creep), it follows
that the traneveme shear strains are negligible, If w is
assumed to be approximately independent of z, then from

it follows that
aw

‘=U–z-m

(13)

(14)

(15)

(16)

U).w (17)

where U, V, and W can now be identified as the displace
ments of the middle surface, Equations (15), (16), and (17)
express the Bernoulli-Euler hypothesis.

A more rigorous treatment, in which the dependence of
the various quantities on the z-coordinate is deduced by
expanding them in powers of a thickness parameter, might
be possible. In some derivations of plate equations, U, V,
and W are interpreted as weighted averages of u, o, and w.
(See refs. 4 and 9, for example.) However, the consequences
of assuming equations (15), (16), and (17) to be true are
mpected to lead to accurate results for thin plates.

Equation (3) for the finite strainsin terms of displacements
is simplified by dropping all nonlinear terms except those
‘containing powem or products of slopes. This simplification
leads to the Von I@mti equations for an elastic plate.
The rcwlting equations for the strains are

(19)
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6.=7’Z*=I’VZ=0 (21)

In order to be consistent with these approximations, only
terms containing powers or products of rates of slope are
retained in tbe second term of the volume integral in I.
(See eq. (7).)

Before the integration with respect to z can be carried out
in the exprewion for I, the dependence of the stressesupon z
must be assumed. Unlike the elastic case, the stresses do
not vary linearly through the thickness, even though the
strains do vary linearly. The particular advantage of the
generalized form of Reissner’s variational theorem for use in
the present problem is that approximations for the stresses
and strains can be made independently. Thus, there is no
neceasi~ to invert the stress-strain relations in order to
determine appropriate approximations for the stresses; in
fact, to invert the stmxwkrain relations wodd generally
be impossible.

Many possibtitiea exist for assuming the form of the
stresses as functions of z, and each possibility leads to a
different set of plate equations; thus, no particular system
of equations can be set up which can be called the cxeep
equations for a plate, column, or beam. Generally, it is
advantageons to assume tbe form of the stresses and dis-
placements as functions of x and y also, in which case all
the integrations in lmaybeperformed. Setting the variation
of the resulting expression equal to zero leads to a set of
ordinary differential equations in which the independent
vtiable is the time. Further details of the application of the
variational theorem to -creep-collapse and creep-bending
problems of columns and plates can best be cmnnmnicated
by means of examples, two of which are given in the following
sections.

EXAMPLE OF APPIJCA~ON OF VARIATIONAL THEOREM
TO OREEP COLLAPSE OF COLUMNS

A simplified treatment of the problem of creep collapse of
the uniform, pin-ended, rectanguhu-section column shown
in figure 1 is given as the tit example. The plastic pmt of
the strain is omitted, and the stress-strainrelation is assumed
to be

where the second term on the right includes the effects of
primary and secondary creep. The tial displacement u is
assumed to be given by .

(23)

‘------ L-----i /--b-+

‘-”3+
z z

Fmum I.—Pin-ended reotanguhr-section column.

and the axial strain e by

au &JJ71 ~’w2~=——z—ax ()&z+3 ~ (24)

In the present case, the following terf& enter into the
expression for X

(26)

where 77(0, t)= O. The special form of I for the column is
then

. .

S[(
1= .

?
u g+g$z~ +

v

For simplicity, the variation of u in the z-direction is
assumed to be linear; thus,

‘“% 4
(27)

The variation of displacements and stres.seain the z-direction.
isassumed as follows:

W=hw, sin y

U=ufi
PG:=E u,

P .im
u;=— u s~ —,bhl”l

(28)

where h is the thickness of the column, b is the width, and
1 is the length. The dimensionless quantities on the right-
hand sides of equations (28) are functions of time alone.
The integrations in 1 may be carried out, and the rmdt is
(for m=3)

where P=is the buckling load of the column. The system of
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differential equations to which the present approximate
analysis lends is obtained by equating to zero the partial
derivatives of I with respect to each of the dotted quantities;
thus, tlm result is

;0=0

6tiOWO+~&+6u0mo=o
1

The solution of this set of equations depends on the initial
conditions assigned. Suppose that the column has an initial
bow in the form of rLhalf sine wave before the load P is
applied. If the load is assumed to be applied rapidly, but
not rapidly enough to introduce inertia effects, then the
initial conditions for the creep problem are those existing
immediately after the load is applied. If the initial bow-is
given by

hA Shl~

the initial conditions for the dimensionless quantities are

TJl(o) =-+
l—p

a

Uo(o)=—1

12A
al (o) =-p

l–E

Tho problem can now be reduced
equation for Wo:

(31)

J solving the following

P
() ()(

p ‘ Wo+$wi’)=o~c—ltio-’ipt’-lE ~ (32)

Except for differences in notation, this equation is simik to
one given by Kempner (eq. (27) of ref. 10) for an idealized
two-element column probhm solved by a collocm3ionmethod,
except that the constant 2%is replaced by X and p is replaced
by 1. llqudion (32) is easily integrated to give

The collapse time t, is found by taking the limit as WO- OJ;
thus,

t.=

P.

[ 1}
~lp’.’~()P1 -z

——

~log 1+

()
27A2

(34)

ii

The foregoing analysis is intended merely as an axample;
more elaborate assumptions as to the stressvariation through
the thickness and the variation of the several unlmowgs
along the length of the column lead to systems of nonlinedr
differential equations which may be solved by some nuni&r-
ical method.

EXAMPLE OF APPLICATION OF VARIATIONAL TFIEOREM TO CREEP
BENDING OF PLATES

For a second example, the bending of a simply supported
circular plate under a constant uniform load is considered.
(See fig. 2.) For simplici~, the analysis is restricted to the
time during which the defections are small so that the linear
strain-displacement relatkms can apply. The general form
for I in tk case is

(35)

Here, again, the effects of plasticity are neglected. The creep
law is that given by equation (1). The various hms in the
integrand must be specialized to apply to the present pla@
problem. In polar coordinates the shear stress and shear
strain are zero from Symmew, and the remaining stresses

1

I

I
z

FIGURE 2.-Simp1y supported oiroukmplate with Iataral load.
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If a linear strain distribution through the thiclmess is
assumed,

For the elastic part of the second term in equation (35)

(37’)

@8)

For the creep part of the second term,

i:j;f~j(JJ8*j;fj=f(JJ J9 (39)

Further, it is asmmed that the form of ~ is such that

In thisexample, the exponent m is taken to be unity; this
assumption corresponds to the cubic law in the uniaaial stress
CftSO. Then,

Jhus&-9 ( r +U?-WJ [~r(%-u,) +&@u,-u,)] (41)

The variation of the, stresses through the thiclmess is
assumed to be linear; thus,

#M,z

.}

,’_— h~.
(42j

12M,Z
“~= h3

Doubtless, after creep is well established, the stress distribut-
ion cannot actually be linear in the thiclmess direction,
but, for purposes of this example, such an approximation is
sufficient. When integration in the z-direction is carried
out,

}
MJ +tit (2Mt-MJ] dpdo (43)

where R is the radius of the plate, P=r/R, and the primes
denote diilerentiation with respect to p. The following
expressions, based on the elastic solution for this problem,
are assumed for the displacements and moments:

W=h(l–p2) (Wo+&12W,)
)

al,=mw,.o(l-p)

il!lt=mqil~t,o+p%ql)

(44)

Equations (44) are substituted into
integrations carried out. Then, on

equation (43) and the
equating to zero the

par&l derivative with respect & the dotted quantities, the
folIowing equations are obtained:

iWr,o+2tit, O+lf,, *=O

3iifr,o+tit, *=o

FO+W1–2 (3[211&#(3ill,,o+Jz,,,)]
\.. ,

R2

()
3~0+~,–6 ~ (3kf,,0+2kft, ,–@,,o)

=6 144AE3 R 2
()

—~13
5

where

J(E7L’)311=‘p(l–p’) (2Mr–i’kq (Mr2–M,M,+M*’)dP”
o

J(E7P)’1,=;P(2M,–M)(M,’–il’qkf,+ilz,’)dp

J(m’)’I,=1p3(2Mt–Mr) (M,z–il’l,kf,+kf,’)dp
o

(46)

(46)

Equations (45) can be solved for the five dotted quantities
to give

~o_wn.iV R 2
()[

3(1+#) (3~3–11–~2)—— —
5 h, I,–r 1

()[@144xE3R23
1‘--r K ~ UI-L+L) +

3(1+P) (3~~–1,–~2)
8 1

i%zr,o=mt,o=-z1m’,,,=%(31,–1,–.T,)

where the expressions for 11,19, md Ia are

L=* (3fwt,03—3fMt,o%tt,~—3Mt,oMt,?-M’, ,3)

1,=-: (5M,,03+9Mt,o%14t,,+7M,,~M,, ,~+2Mt, is)

13=-& (14hf,,$+32iW,, o’lkf,, l+27fW,,o~,,12+8f~lt, ?)

(47)

(48)

Equations (47) are a system of firstirdsr nonlinear d&r-
ential equations with time as the independent variable. The
initial conditions required to determine the solution are given
by the elastic solution to the loaded plate. (See ref. 11,)
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Thus,

(49)

Since J~,,o=Mj,o and ~M,,o(0)=M,,O(O), it follows that
M,, O=MI,O. Equations (47) with initial conditions of equa-
tions (49) can be integrated numerically by the motied
Euler method (ref. 12). hTu.mericalcalculations were made
for a plate having a ratio of radius to thiclmess of 50. The
value of E used was 7.4 X 10epsi and the value of XE3used
was 2.72 X 108per hour. These values together with the
cubic unirmialcreep law correspond appro.xinmtely to char-
acteristics of 2024-T3 aluminum alloy at a temperature of
600° F. (See ref. 2.) Results showing the time history of
the maximum deflection of a circular plate under lateral load
are presented in figure 3.

:
0 1,200

Time, hr

FIGURE3.—Time history of maximum d~flection .of simply supported

circular plate under lateral load. $=50; material, 202+T3 alumin-

um alloy at 600° F.

CONCLUDING REMARKS

A variational theorem for creep has been formulated which
is an extension of a vsxiational theorem developed by Reies-
ner. Various systems of equations leading to approximate
solutions to problems of the weep behavior of plates, columns,
beams, and shellsmay be obtained by using direct methods of
the calculus of variations in conjunction with the stated
theorem. The application of the theorem is illustrated for
plates and columns by the solution of two sample problems.

LANGLEY AERONAUTICAL LABORATORY,

N!ATIONAL ADVISORY COMMImEE FOE &dRoNAuTIcs,

LANGLEY lhLD, VA., March 6, 1967.
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